05

\J
»

AD-A199

S0

i XA R~
14 S T

i
St

L AR o
FE Py A S

~RFL Y
T a P

Zrony

39

ns

&

LR P

)

{ ol }
S

MDUM No. 4160

JALS & RAD
LégHMENT

&%

THE INSIDE/CUTSIDE ALGORITHAM: GRAMMATICAL INFERENCE
APPLIED TO STOCHASTIC CONTEXT-FREE GRAMMARS

Author Lomreine Dodd

PROCUREMENT EXECUTIVE,
MINISTRY OF DEFENCE, e
NSRE MAYERN, . . -
woRes., . L

R T i
v g T e !
[N TS 414 A A
— e S L i

i

Arigrered oy o
Cintpmnties liagted

93 1037 cafw

P

. LN a,mrr 2]

Royal Signals and Radar Establishment

Memorandum 4160

THE INSIDE-OUTSIDE ALGORITHM:
GRAMMATICAL INFERENCE
APPLIED TO STOCHASTIC CONTEXT-FREE
GRAMMARS

Lorraine Dodd
s June 1988

Copyright © Controller HMSO, London, 1988,

Abstract

This paper describes the Inside-Outside algorithm which re~
abilities of a stochastic context-free grammar,

memorandum is the application of the Inside-O
; words.

estimates the rewrite rule prob-
The particular example described in this
utside algorithm to the spelling of English

Copyright
C
Controller HMSO London
1988

Contents

Introduction

Stochastic Formal Grammars

2.1 Introduction
22 Tree Diagrams
2.3 Stochastic Context-free Grammars

The Inside-Outside Algorithm

3.} Introduction L
32 Terminology
33 Notation

34 Theeand f values

3.5 Calculationof the e and fvalues
.6 The Re-estimation Process.

The Computer Program

4.) Introduction
4.2 TheMain Program L.
4.3 Initialisation
4.4 Probability Assignment
4.5 Calculationof eand fvalues
46 Matrix Update
4.7 Notes
The Experiments

51 ThelnputData
5.2 A Grammar for spelling -ght-words
53 Results. L

A Maximum Likelihood Parser

6.1 Introduction
6.2 Parsing using simple word tags
Discussion
Appendix
TN
e)
by
Crer
4 /s
i
i A-
L. ,
S . -

b

CO R b e

I e NS G U R 2

W O W 0o oo o oo ®

gty

g

List of Figures

1 A derivation tree for the word ‘deal’ 2
2 The interval [de| spanned by node labelled C 4
3 Thecalculationofe[s,t,i] L. 5
4 Thecalculationof fls,t,f] 5
5 Calculationof the weights 7
6 Grammar ‘score’ against number of iterations L. 12
7 Maximum likelihood parse tree for the word ‘night’ 13
8 Maximum likelihonA pares tero for ¢b- tog sicing AJNVR 0 0 00 0 0 14
List of Tables
1 Results of grammatical inference for -ght-words 11

T T Y T TV T e

-

1 Introduction

Current research at RSRE into language modelling for Automatic Speech Recognition
(ASR) involves the study of formal methods of grammatical inference; in particular, the in-
ference of stochastic context-free grammars. The Inside-Outside algorithm (2] re-estimates
the rewrite rule probabilities of a stochastic context-free grammar from many examples of
data strings (which may be words, sentences, sequences of grammatical tags, mathematical
expressions, or anything that could be explained by a context-free grammar). The Inside-
Outside algorithm is also known as Baker's algorithm as it is based on his ‘nodal span’
principle which generalises and extends the techniques used in Hidden Markov modelling
[4] to stochastic context-free grammars. The crucial idea is that the hidden random van-
ables are associated with spans (i.e. intervals or substrings of the data strings) rather than
with single sample time=< as in the (finite-state) Hidden Markov models.

This paper describes the mathematics of the Inside-Outside algorithm, a procedure for
programming the algorithm and some early results of grammatical inference work using
simple context-free grammars and small structured samples of English words. Section 2
briefly introduces stochastic formal grammars {(SFGs) and gives an example of a stochastic
context-free grammar. (For a more detailed description of SFGs see [3].) Section 3 describes
the mathematics of the Inside-Outside (I-O) algorithm. Section 4 briefly discusses the
computer programming aspects. Section 5 describes some exploratory experiments using
the 1-O algorithm on simple structured word strings. Section 6 briefly shows how the
inferred stochastic context-free grammar can be used to find the maximum likelihood parse
of a string. The final section is a discussion about the problems of using the 1-O algorithm
for general grammatical inference.

2 Stochastic Formal Grammars

2.1 Introduction

A stochastic forma! grammar (SFG) can be used to specify languages and to describe
physical patterns and data structures. A SFG can also be used in a generative capacity.
The rewrite rules of the SFG have associated probabilities which can be used in a random
sampling process to generate, for example, letters to form a word string. The probabilities
for all the rewrite rules with the same left hand side sum to unity. For example:

S — DC 04
S — CD 06
D — AB 10
C — BA 10
B — d 03 (1)
B — ! 0.7
A - e 06
A — a 04

The symbols C and D are non-terminal symbols which are rewritten according to the
stochastic rules as AB or BA. (These rules will be called non-terminal rules.) The special
(start) symbol S denotes the start of the rewrite process. Pre-terminal symbols are those
non-terminal symbols which can only be rewritten as terminal symbols. The pre-terminal
symbols are A and B. (The rules which rewrite pre- terminals will be called terminal
rules.) The grammar will generate sequences of terminal symbols such as ‘deal’, ‘lead’, etc.

0.6(1.0(0.3*0.6)*(1.0(0.4*0.7))

Figure 1: A derivation tree for the word ‘deal’

(Capital italicised letters will be used to denote non-terminal symbols and lower case letters
to denote terminal symbols.)

2.2 Tree Diagrams

A context-free grammar can be thought of as defining a set of tree diagrams. Each tree is
labelled with a start symbol, S, at the root node, with terminal symbols at the leaves and
non-terminal symbols labelling the inner nodes. Each node and its associated branches will
be called a sub-tree and each sub-tree corresponds to a producticn rule in the grammar.
Each tree has as its leaves a sequence of terminal symbols. Each tree has a probability
associated with it which is the product of the probabilities associated with the sub-trees.
The sum of all these tree probabilities is unity. Any particular sequence of terminal symbols
may have more than one tree representation and the probability of the terminal string
(given the grammar) is the sum of the probabilities of all these trees. The usual role of
a tree diagram is to illustrate the parse (or derivation) of a word, sentence or data string
according to the grammar.

For example, a derivation tree for the word ‘deal’ according to the grammar in (1) is
as shown in Figure 1. The probability of the word ‘deal’ being generated by the grammar
rules (which is shown in Figure 1) works out at about one chance in thirty-threc (or 0.03).

ey

2.3 Stochastic Context-free Grammars

If the rewrite rules of the grammar are oi the form:

A— 7
(* is the Kleene operator which denotes a sequence or repetition) where
Ae Vn
and
yeVy UV

where Vi and Vr are the sets of non-terminal and terminal symbols, respectively. (that is,
4 is either a non-terminal symbol or a terminal symbol and A is a non-terminal symbol).
then the grammar is a context-free grammar (CFG).

In a context-free grammar any sequence of terminal and non-terminal symbols can
appear on the right hand side of the rewrite rule but the left hand sides must consist of
one non-terminal symbol only. Any CFG (even when stochastic) can be transformed into a
more useful form {{or the purposes of the 1-O algorithm) called the Chomsky Normal Form
{CNTj i1}

A — BC
C — ¢
Non-terminal rules in CNF have only two non-terminal symbols on their right hand side

which limits the derivation tree to binary branches.

3 The Inside-Outside Algorithm

3.1 Introduction

The Inside-Outside (I-O) algorithm re-estimates the probabilities associated with each of
the rules in a stochastic context-free grammar given many examples of terminal strings
which have been (or could have been) generated by a SCFG. The 1-O algorithm can only
accept and work with rules which are written in CNF. Initially, either random probabilities
or probabilities which represent some prior knowledge about the grammar can be assigned
to initialise the algorithm. Strings from a sample training set are read into the algorithm
and ‘nodal span’ probabilities are calculated. At the end of the training sample, the rewrite
rule probabilities are updated and the process continues to the next iteration. In effect,
the I-O algorithm considers all possible parses of the input string according to its current
rewrite rule probabilities and counts the number of times each of the rules is used. After
one pass through a training set, it normalises and weights these counts to give an estimate
of the probability of each rule.

3.2 Terminology

The term ‘interval’ is used to refer to a substring of the input string and it is usually
associated with a particular node in the tree diagram. (In Baker's terminology an interval
is referred to as a ‘span’ but the term interval will be used in this paper to distinquish it
from the use of ‘span’ as a verb.} Sub-tree probabilities are calculated for every interval
(i.e from intervals of length one to the entire string) and for every node in the tree which
could ‘span’ the interval. In following sections these sub-tree probabilities will be called the
e and f values. For example, in Figure 2 the interval (delimited by square brackets) {de]

has length two and the node that spans [de] is labelled C.

Figure 2: The interval [de] spanned by node labelled C

3.3 Notation

The rewrite rule probabilities fall into two distinct types. The probabilities which are
associated with non-terminal rules will be called the A-matrix probabilities and the terminal
rule probabilities will be called B-matrix probabilities.

The rewrite rule label, — label, label; ,1.0is expressed in A-niatrix notation as follows:

a:5p = 1.0
A rewrite rule such as, label, — terminal; ,0.5 is expressed as :
b,k =05

In terms of the derivation trees, the B-matrix probabilities are associated with the leafl
(terminal) nodes and the A-matrix probabilities describe the statistics of the branches across
the set of trees. The e and f values are denoted by efs,?,¢] and f[s,t,1] where s marks the
first character of the interval, t marks the final character in the interval and 1 represents
the labelled node in the tree which spans the interval.

3.4 The e and f values

Assume that there are L strings, dy,d2,...,d;,...,d. in a training set. The Ith string is
O‘l....O’T, and its length is 7;. For example, grammar (1) in Section 2.1 could generate
as string, d), the word ‘deal’ so that Ty is 4 and O}...O} are ‘d’..‘1’ respectively. The
e-value, e|s,1,1], is the probability of the interval O,...O, given that the non-terminal, s,
spans the interval. The f-value, f[s,t,1], is the probability of the intervals 0;...0,-; and
O¢41...07 given that the non-terminal, ¢, gpans the interval 0,...0. So the e-value gives
the probability of the sub-trees ‘inside’ the span of the non-terminal and the f-value gives
the probability of the sub-trees ‘outside’ the span of the non-terminal.

L3N

- e

—

| k

S . \r r#l Nt
]
J
|
; Figure 3: The calculation of e[s, t,1]
1
d

k ' /(‘\ k
r s-1s t S t tﬂ/ \ r

Figure 4: The calculation of Js,t,1]

!
5

3.5 Calculation of the ¢ and [values

The I-O algorithm is a kind of two-stage parsing process. The bottrm up process generates
the e values and effectively considers all possible configurations of the parse tree ‘inside’
the section below the node spanning the interval. (See Figure 3) The top down process
generates the [values and effectively considers all possible labelled sub-trees ‘outside’ the
section spanning the interval. (See Figure 4) For example. given that the algorithm is
initialised with the probabilities of the SCFG as given in Section 2.1 and the input string
is ‘deal’, then the basic steps in the 1-O algorithm are as follows :

1. Assign the current B-matrix probabilities to the e values for the first stage in the
bottom up process (i.e. for spans of length 1).

The only non-zero probabilities are :

e[1.1,Bl =bgy =bpy =03
€[2.2.A) =byy =ba =06
€3.3. A =buor =ba =04
eid 4, B =bpoy =bp =07

2. Now consider all possible parses of the intervals of length two using the e values, as
assigned in step 1, and the existing A-matrix value for all possible nodes. The only non-zero

probabilities are :
el1,2,Cl=¢]1.1,5]¢2.2,Alacpa

and

€[3,4, D] = €(3,3, Al e[4,4, Bl apas
Using this particular grammar there are no alternative trees for the word ‘deal” and so
g

there is only one term in the e-value probability calculation.)

3. Now consider the intervals of length three (and so on ..} so that all possible parses of
the interval given the node are added into the e-value The general equation for the e-value
is

e[s,t,1] = Z els.r.ilel{r + 1),k a,e
.k

where r varies between s and 1.
4. The final step in the bottom up process calculates the e-value for the entire string.

This e-value, €[1, Ty, S}, is the probability of the werd ‘deal’ given the current SCFG (i.e.
the current A-matrix and B-matrix).

5. The first step in the top down process is to set f(1,7y,S} = 1.0.

6. The f values are then calculated using the f values which were calculated in previous
steps of the top down process and the e values as appropriate to the portions of the string
outside the interval(s..t]. The general equation for the f values is :

[ls,t,d] = z flr.t, glelr,s — 1, k]a,u + Z [ls.r slelt + 1,7 klajix

rJ.k rak

where in the first term r varies between 1 and s - 1 (i.e. for the substring on the left hand

/
S \Nro A

fls.t.] elsr,] elr+1th] fls.t)]

Figure 5 Calculation of the weights

side of [s t') and in the second term r varies between t + 1 and T) (ie for the substring
on the right hand side of [s..t})

The 1-O algorithm for SCFGs is analogous to the Forward 'Backward algorithm for
Hidden Markcv models {4] and uses the same kind of iterative Dynamic Programming
technique. The o and 4 in the Forward ‘Backward algorithm are the equivalent of the ¢
and f values, respectively.

3.6 The Re-estimation Process

Before describing the re-estimation process it is useful to define some extra notation so that
the equations simply become a summation of weights :

wogr = 2, flectd]els,r gl elr + 1.t kl g,y
wee = efs] fls bl (= T, wonyu)

The weight. w,,. is the probabihty of the string (5; O7 given that the interval O, O,
is spanned by non-terminal, 1. The weight. w . ,. s the probability of the atring ©; (5
given that the interval O,..O; is spanned by non-terminal. r and that the non-terminal. 1.
rewrites as non-terminals, y and k. (See Figure 5.)
The A-matrix probabilities are updated as follows -
EIL:] X’f‘ p "'_Lﬂ_!

e 2)
L - (2)
El:]Pl lz.-« “'f-r-

where p; is the probability of the Jth string according to the current probabilities and it 1s
represented in the algorithm as e(1, T}, 5] (the [subscript represents the string index).

al)k =

So the ‘inside’ and ‘outside’ parsing probabilities (i.e the e and f values) are combined
with the current rewrite probability for each binary branch and this is narmalised by dividing
by the sum of all possible binary branches to give the new A- matrix values. The probability
of the stiing, pi. is used to weight the statistics in favour of the more unlikely strings to
prevent the rule probabilities ‘feeding’ only from the more comnon strings as the iterative
process continues.

Frequency counts of the strings can be used quite simply in the re-estimation equations
by muitiplying the weight summation. Denoting the frequency of the ith string by fregq,
the re- estimation equation becomes : .

L -1 A
El:l freq, Py S-'f u stk

al)k = 1 3 (:”
Tioy [req Py e "‘in
The B-matrix probabilities are updated similarly :
L _-lg~ 1
< TP Lro,'tkuu;
e s T ()

—L -1 N
i Ecuul

so that the numerator only contains those weights for which the entry at position ¢ in the
string is equal to terminal k. The string frequency can be used as in equation (3) :

L 1 1
5. ey freap 3 tol=k Wi 5
3k = *iif /':emi -1 Th; ()
=1 QP L Wy,

4 The Computer Program

4.1 Introduction

The Inside-Outside algorithm computer program is written in modular form in VAX PAS.
CAL. Details of how to run the program and the 1-O algorithm demonstration are given in
the Appendix. The following sections describe each of the modules.

4.2 The Main Program

The main program simply reads in all the control parameters (such as the number of non-
terminal labels, etc and the various file names). It then performs the main iteration loop
for the required number of training cycles

4.3 Initialisation

This small module simply initialises the weights to zero at the beginning of each iteration

4.4 Probability Assignment

The A-matrix and B-matrix probability values are initialised according to the user's choice
from the following three opiions:

¢ random numbers between 0 and 1.

e uniform values

e probabilities taken from a file which represent prior knowledge about the grammar or
from a previous :un.

All probabilties are then normalised to conform with the (cnditions for a SCFG. In
the case of the use of prior knowledge about a particular grammar the probabilities in
the ‘prior knowledge’ file are slightly reduced due to all other (i.e. unspecified) matrix
probabilities being initialised as ‘a small number’ to avoid initialising probabilities as zero.
(If probabilities have zero value then they remain at zero due to the multiplicative functions
in the algorithm.)

4.5 Calculation of ¢ and f values

Before each iteration the e and [values are initialised to zero. The values are then simply
accumulated over the training set. The bottom up process is controlled using the following
loops :

interval length goes from 1 up to string length

s goes from 1 to string length-span length+l

The top down process is controlled using the following loops :
interval length goes from string length down to 1
t goes from string length to span length

The variable r moves between s and t and the ¢, 7 and k nodes assume the values of all
possible Jabels up to the limits specified for the non- and pre-terminals.

4.6 Matrix Update

At the end of each iteration the ¢ and f values are used to update the A-matrix and B-
matrix probabilities as shown in equations { 3) and (5). After the required number of
iterations, the values of the A-matrix and B-matrix and their corresponding indices are
output as the inferred grammar rules.

4.7 Notes

Pre-terminals are given arbitrary labels in the I-O algorithm but they must be treated quite
distinctly from other non-terminal symbols. Non-terminal symbols are also given arbitrary
name: but a special non- terminal symbol must designated to be the root (start) symbol.
S. Binary CNF rules (e.g. § — AB) are assumed throughout.

5 The Experiments

This section describes some of the exploratory work which was carried out to validate and
verify the computer programs and to examine the generz! behaviour of the algorithm.

5.1 The Input Data

In order to provide training data for the algorithm, the computer readable LOB (Lancaster-
Oslo-Bergen) corpus of English words was used, and all words marked in the corpus as proper
nouns and foreign words were excluded. Hyphenated words and those containing apostophes
were included and the hyphen and apostrophe are treated as alphabetic characters. Several
small subsets were selected from the corpus for the purposes of testing and training. In the
example described in 5.2, a typical training set is a subset of words which all contain the
substring ‘ght’:

1 brighter 2 bright
3 bought 3 caught
6 delight 2 etght
4 flight 3 hetght
1 1insight 6 fight
1 lights 13 brought
3 caught 5 daughter
2 fighter 2 flights
3 height 5 light
1 nights 1 ought
3 rights 1 stghts
1 sought 14 thought
3 tonight 1 upright
4 weight 31 nsght
17 right 2 sight
3 tonight 1 upright
4 weight 31 night
3 rights 2 slight
2 straight 1 taught
1 wupright 4 wetght

where the number before each word is a frequency count of the number of times that the
word occurs in the sample taken from the corpus.

5.2 A Grammar for spelling -ght- words

The algorithm starts-out with random rewrite rule probabilities which are correctly nor-
malised. The algorithm aiso needs to be told how many non-terminal and pre-terminal
symbols it is to use for its SCFG. The e and f values are calculated and accumulated for
every word in the training set and at the end of each training set the A-matrix and B-matrix
are updated.

The next iteration uses the new A-matrix and B-matrix probabilities to calculate the
e and [values. In this way the algorithm re-estimates the probabilities according to the
structure in the words of the training set.

5.3 Results

The algorithm uses input data similar to the lists in 5.1 and the number of labels for non-
terminal and pre- terminal symbols is varied in order to examine the effects of changing
these numbers on the resulting grammar. The number of matrix updates is also varied to
discover the rate of change of the grammar as the algorithm is exposed to more training

10

e s JEEBEEE SN

-

r Results on -ght- words]
I updates non,pre-terminals Aver word prob \

20 20,8 0.0001020
20 24,12 0.0000802 |
30 20,8 0.0069200 |
30 24,10 0.0133443
30 24,12 0.0213200
30 22,10 0.0216900

Table 1: Results of grammatical inference for -ght- words

data. The results in Table 5.3 were obtained and are listed in ascending order of probability
value.

The first column shows the number of matrix updates (i.e. the number of training
set iterations) before the grammatical inference process is stopped. The second column
gives the upper limit on the number of non- terminal and pre-terminal symbo! labels that
the algorithm uses. The third column shows the average word probability taken over all
the words in the training set given the SCFG that the algorithm has inferred in its final
iteration. Figure 6 shows how the inferred grammars gradually get better at explaining
the data in the training sets. The grammar ‘score’ is the logarithm of the average word
probability at the end of each iteration. It takes several iterations for the node labels to
become organised and then the grammar score rapidly increases. The rate of increase slows
down until further iterations produce only small improvements.

The inferred SCFG can be used in a simple random sampling process to generate syn-
thetic ‘word strings’. The following list of words was generated from the grammar which
resulted from the run with 30 updates, 22 non-terminals and 10 pre-terminals :

night pright light rright
fenight aight enight light
baight night sight right
eight light night wwnight
night night enight night

eight night etght rught
sright night tnight night
light aight rught atght

elught night etght entght

cnight night night unnight

night night ulight night

lught night night lught
fecfnight wnight

6 A Maximum Likelihood Parser

6.1 Introduction

The inferred SCFG can be used to generate the parse of an input word string which gives
a maximum likelihood value. (This is called the maximum likelihood parse.} The e values
are calculated in the normal bottom up process but the maximum e-value is stored for each

11

v - ———gp—— >

-3.04
92
o
[+
[
>
L 6.0
[+ 4
e
4]
(@]
—
-9 0

0O 2 4 6 B 10 12 14 16 18 20 22 24 26 28 30
NUMBER OF ITERATIONS

Figure 6: Grammar ‘score’ against number of iterations

12

Figure 7: Maximum likelihood parse tree for the word ‘night’

node label and interval. Pointers are set to the corresponding j and k (and r} so that in
the top down process the tree can be traversed to generate the maximum likelihood parse.
The process is basically one of dynamic programming; each interval (or span) is a stage and
the non-terminal node labels are the states over which maximisation occurs at each stage
The recursive procedure calculates the maximum likelihood parse at each stage by taking
into account the maximum likelihood parses at previous stages (i.e. for increasing size of
interval). The final stage is reached at the root node (which spans the whole input string)
where the value of the recursive maximisation function 1s the maximum likelihood of the
string and the pointers which were set at each stage can be traced back down the tree to
give the parse.

As an example, the maximum likelihood parse of the word ‘night’ is as shown in Figure
7 for the grammar inferred from 30 updates of -ght training sets with 22 non- terminals and
10 pre-terminals. (The node labels are those used within the program.)

6.2 Parsing using simple word tags

As a simple extension of the word-spelling experiments the sequences of single letter word
tags from the LOB corpus are analysed using the 1-O algorithm. Sentences of length less
than six words are extrected from the LOB corpus and the first letter of the tag for each
word in the sentence is written into a string which represents the broad part of speech
analysis of the sentence. For example, the sentence ‘The cat sat on the mat.’ would be
represented as ‘ANVIAN’ (i.e. article,noun,verb preposition,article,noun). Such strings are
used as training data for the algorithm. The inferred grammar rules could then be used to
find the maximum likelihood parse of test sentences such as the one in Figure 6.2.

7 Discussion

The results of the simple -ght~ word experiments show that too many non-terminal node
labels can give lower grammar scores due to the extra processing required to organise the
greater number of symbols.

13

e~ —g—yey-

ends soon
long memo

Figure 8: Maximum likelihood parse tree for the tag string AJNVR

A serious problem with the 1-O algorithm is one of ‘underflow’. In olher words, the
e and [value calculations involve multiplications of (often) very small probabilities which
quickly approach the lower limit for a real value in computer terms. So far, the small < imple
training sets have not caused any underflow problems but future work (which is now being
carried out) on general English spelling is more likely to run into underfiow problems so,
to get around the problem, the e and f calculations and matrix re-estimations make use of
logarithms (and so addition rather than multiplication).

The algorithm is processor intensive (in particular, the € and f calclulations) in terms
of computing time for each iteration. The processor time scales with the number of non-
terminals and terminals, the number of iterations and the length of the input strings; so to
infer grammars which have many symbols and which can generate long strings, the A-matrix
and B-matrix would have to be initialised with probabilities which reflect prior knowledge
about the grammar (rather than random numbers), in order to reduce the number of iter-
ations necessary to achieve a grammar with a high score (see Figure 6). The algorithm is
well suited to parallel processing, however, as the e and [values could be calculated quite
separately for each string in the training set. Alteratively, or in addition, parallel or vector
processors couls be used for the e and f calculations by exploiting their structure, which is
basically that of matrix multiplication.

14

SRy

8 Appendix

The 1-O algorithm program is in [DODD.]O] and the following modules need to be linked :

BAKERMAIN
ASSIGN

INIT WTS

EFCALC

UPDATE MATRICES
AEDMOD

AEDLIB (LIBRARY)

The VMS command to link the above modules is called LINKBAKER.COM and it is exe-
cuted by typing @LINKBAKLCR. BAKERTEST.COM runs a test version of the algorithm
and an example of the contro! data for the perticular test run is given below:

set def [dodd.io}

run bakermain

random (* other options are ‘prior knowledge' and ‘uniform’ =)

baker.out (* name of general output file *)

genfil .inp (* name of file for final inferred grammar rules =)

prifil2. inp (* prior knowledge rule file - if used *)

matfil.out (» file for final a-matrix and b-matrix *)

3895 (* initial random number seed *)

3
2

Y

(=
(*
(*
(=
(*
(*

number of non-terminals *)

number of pre-terminals *)

number of training sets *)

selection Y/N for uppercase/lowercase input *)

Y/N for spaces between terminals in input strings *)

Y/N for AED display *)

aedfil2 inp (* file for AED display *)

expert (* control data for the colour routines *)

x=10,y=510, show

n=0,rgb=0,0,100,j

n=},rgb=3+0,j

15

- e

K
pynEn

n=255,8¢C

exit (* control instructions for AED display -)
abc.inp (* namc of file for training set *)
0.01 (* cut off value for output to genfil *)

If an AED dispay is not required then the AEDfilename and the control data for the AED
displays should not be included in the command file.

16

-~ ———

References

[1}) A.V.Ahoand).J. Ullman. The Theory of Parsing. Translation and Compiling: Parsing
Prentice-Hall, 1972.

{2} J.K. Baker. Trainable grammars for speech recognition. In D.H Klatt and J.J. Wolf,
editors, Speech Communication Papers for the 97th Meeting of the Acoustic Society of
America, pages 547-550, 1979.

[31 J.S. Bridle and L. Dodd. Formal Grammars and Markov Models. Memorandum 4051,
RSRE, October 1987.

[4] F. Jelinek. Markov source modellirg of text generation. In NATO Advanced Study
Institute: Impact of Processing Techniques on Communtcation, Martinus Nijhoff. 1955

17

DOCUMENT CONTROL SHEET

Mem‘lsuuhfychswinaﬁnnofshut..“.uwgkﬁs§li159.r

{As far as possible this sheet should contain only unclassified information. !f it is necessary to enter
classified information, the box concerned must be marked to indicate the classification eg (R} (C) or {S))

1. ORIC Reference (if known) | 2. Qriginator's Reference |3. Agency Reference 4. Report Security 441
Memo 4160 usc Claserficat e
S, Originator's Code {if 6. Originator (Corporate Author) Name and Location
778400 known) ROYAL SIGNALS & RADAR ESTABLISHMENT

ST ANDREWS ROAD, GREAT MALVERN,
WORCESTERSHIRE WR14 3PS

5a. Spenscring Agencytc £.. Ssensoring Agency (Lontract Authority) Name and location
Cooe (11 known)

1. Title Inside ~ Outside algerithm: grammatical inference applied to

Stochastic context-free grammars

7a. Title in Foreigr Language (in the case of translations)

b, Presented at (for conference napers) Title, place and date of conference

. Author 1 Surname, initials| 9(a} Author 2 9(b) Authors 3,4... 1u. Date pr. ref
Dodd, L 1688.6 17
—
11, Contract Number 12. Period 13. Project 14, Other Refe-ence

15, Distridbution statement

UNLIMITED

Descriptors {or keywords)

continge on separate piece of rarer

Abstract

This paper describes the Inside-Outside algorithm which re-estimates
the re-write rule probabilities of a stochastic context-free grammar.
The particular example described in this memorandum is the application
of the Inside-Outside algorithm to the spelling of English words.

S$80/48

